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SUMMARY

As an application of the concepts in NACA TN 2541, the problem of
turbulent boundary layer over a flat plate in compressible flow is
treated. The dissipation term in the energy equation, often neglected,
is Pirst carefully studied and found to be of importance. In the dif-
ferential equations governing the fluctuations, the lower-frequency com-
ponents of all quantities are regarded to participate in an equilibrium
in accordance with the similarity concept. After proper lineesrization, a
get of differential equations containing only the lower-order-frequency
fluctuations is obtained. In parallel with Von Kdrmen's theory in incom-
pressible flow, the similarity scales for all the flow variables are
derived. Two possible length scales are found, and the significance of
thlis possibility is discussed.

INTRODUCTION

Prior to the development of high-speed aircraft, the aserodynamic
phenomena were satisfactorlly explained by theories based on an incom-
pressible fluid. Such a situation certalnly no longer remains true.

An increasing abundence of research is now available, attempting to
extend the theories into the compressible range for almost every aspect.
of practical importance. Yet not until recently has the problem of
turbulent boundary layer in compressible flow attracted the attention

of investligators. The reason 1s, of course, that any turbulence problem
is a difficult one even without compressibility. Perhaps demanded by its
practical importance in the flows over an airfoll or in a wind tunnel,

or just to keep pace with the advancement of knowledge in other saero-
dynamic problems, papers dealing with the behavior of turbulent boundary
layer in compressible flow finally begin to appear.
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Thus one has, for instance, the works of Ferrari (reference 1),
Wilson (reference 2), Van Driest (reference 3), Ladenburg and Bershader
(reference ), and Eckert (reference 5). Except for reference U4, which
is a pure experimental measurement using interferometric technique, all
of them present a theoretical analysis. On reviewing these, it appears
that, in these analyses, the turbulent-dissipation terms were neglected
by the argument that any molecular phenomenon is probably of no impor-
tance in comparison with the turbulent transfer. This argument, being
without experimental backing, should be carefully investigated.

The first part of this report is concerned with such an investiga-
tion. The energy equation is studied iIn some detail, and the orders of
megnitude of the various terms are estimated, with the help of available
experiments. The turbulent dissipation is found to be not negligible at
least for boundary-layer flow over an insulated wall. Von Kérmén's
formula for the mixture length has been used in this analysis; but the
conclusions reached on the order of magnitude of the various terms are
presumably correct, even though the distribution of scale of turbulence
- may be only roughly given by that formula.

The second part of this report is an attempt to extend Von Kdrmén's
similarity theory to the turbulent flow of a gas in the boundary layer.
This extension is based on the ideas developed in reference 6. It turns
out (see reference T) that the theory has a certain universal character
with regard to the Mach number and the heat-transfer conditions at the
wall, and the unavoideble correlation constants can be determined once
for all. Owing to the lack of suitable experimental data, the numerical
part of the theory cannot be pursued and is left to the future.

This work was conducted at the Massachusetts Institute of Technology
under the sponsorship and with the financlal agsistance of the National
Advisory Committee for Aeronautics.

ENERGY EQUATTON AND DISSIPATTION TERM

In problems of compressible flow, a relation between the velocity
field and the tempersture field -is furnished by the equation of energy.
In applying the energy equation to turbulent phenomena, it has been the
customary practice to neglect both the heat conductivity and the vis-
cogity terms. The reason implied, or sometimes stated, is that the
molecular phenomena would make but very small contributions in comparison
with the turbulent transfer terms, Just like the situation in the
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equations of momentum. Undoubtedly such vague arguments have definite
limitations. The earlier applications were for the problem of tempera-
ture distribution in turbulent flow at low mean velocities. There is a
predominant temperature field. The conduction terms are of the same
nature as the viscous shear in the equations of momentum. The heat
generated through viscous dissipation, being caused by the velocity
fluctuations, 1s probably emall because of the large mechanical equiv-
alent of heat. Hence it seems reasonable that for low Mach numbers the
neglect of molecular terms would be Jjustified. Recently, in treating
turbulent boundary layer in supersonic flow, various authors have retained
such a procedure without questioning its validity (references 1 and 3).
The following is an attempt to disclose the deciding factors in assessing
the relative welght of the molecular terms and the turbulent terms. Most
important of all, the dissipation term is found to be not negligible in
the case of boundary-layer flow over an insulated wall, irrespective of
Mach number.

One may first write down the complete energy equation (reference 8,
p. 606)

pcy %% + p(%i + %% + gg) = KPT + @ (v

where cy 1s the specific heat at constant volume, k is the heat
conductivity, and ¢ 1is the dissipation, defined by

_ QE 2 QE 2
d=p 2<Bx> + E(By) ... (2)

The first term on the left-hand side represents the convective action.
Equation (1) is the equivalent of the statement that following a particle
the temperature change is due to three kinds of heat sources: The com-
pressibility, the heat conduction, and the dissipation. Without essential
difference, let the incompressible case be considered. Then equation (1)
becomes,

VT + é; € ‘ (3)

=41
=

L
v




L NACA TN 25k2

obtained by omitting the compressibility terms and dividing through with
cph. (See appendix for definitions of symbols.) Here 7 = cp/cy, the

ratio of specific heats, o = cpp/k, the Prandtl number, and e = ¢/u.

In turbulent flow, each quantity may be split into mean and fluctuating
parts; that 1is,

LE, DI\ _lo2r, Lo2p 4 Lirs e
7—v<-D¥+E—)_Gv2§+Uv2T +Cp(e+6) (3a)

It is now intended to compare the terms on the right-hand side with a

typical term on the left-hand side, such as V' % The mean flow 1s

assumed to have a characteristic velocity U in the x-direction, as in
boundary-layer or wake flows.

(1) The molecular conduction term %sz due to mean temperature:

Let
=L 1 . &
rl-cv%yvv dy
Then
- R’1@12@1 , aT
18— —5f-oV
Ody v dy
_7xi_.d25£>
o v' \dy< ay

(In the following discussions of the orders of magnitudes suitable root-
mean-square values will be implied without explicit notation.) At least
for a study of the order of mesgnitude, one may use Reynolds' analogy

(reference 8, p. 649 £f.) to relate mean temperature with mean velocity;

that is,

&°T [aT ,, 450 /a0

w2 ay ay?ay

m1/1
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where 1 may be interpreted as either the mixing length or Von Kérmdn's
similsrity scale. Thus, )

w1 = o2 o) (ke)
or
_oAT L1
17 0(0 vt 1 RL) (kb)

where L 1is the characteristic length of the mean flow and Ry, 1is the
mean-flow Reynolds number, defined by

Ry, = UL/V

Two 1llustrative cases may be given. For jet or wake flow, L may be
taken as the "breadth" of the wake, where U = ;z-‘tg «+ The well-known

theories (see, e.g., reference 9) assume
L/1 = Constant

the constant belng of the order of 0.2 for two-dimensional jets. The
ratlo ry 1is indeed small throughout the section. In the case of
boundary-layer flow, L may be taken as the thickness of the layer and

1 »0.ky

Then equation (4b) indicates that r; becomes important only when very
close to the wall, where laminar sublayer comes in anyway.

A different form of formula (La) will also show that ry is gen-
erally small. Introducing the turbulence Reynolds mmber R, = u'a/v,
where A 1is the microscale, equation (4a) becomes

ry A o(l“—'-]:-> (ke)

Except when near a solid wall, u'/v' = 0(1), so r] w o(ﬁli)




6 NACA TN 25k2

(2) The molecular conduction term %Y72T' due to fluctuating

temperature: The term V2T'  involves second derivatives of a fluctu-
ating guantity, therefore greatly influenced by the high-frequency
components of the fluctuation. It will be compared with a

1
term = v! éz—. Before the comparison, however, one may observe that
the neglect of viscous shear in the equation of momentum implies the
following relation:

82u Bu
By2

rp =V , <1 (5)

in spite of the high-frequency components in 82u'/8y2. Now form the

ratio
1 1 oT!
Ty = =Vor /= v —
37 ¢ /7v oy

N XL?@.L’) 6o
70V'(3y2 oy (6)
Rewriting,
2 u!
S

Reynolds' analogy assumed that the temperature and velocity fluctuations
are proportional. Although such an approximate picture cannot be expected
to hold for the derivatives largely controlled by the high-frequency com-
ponents, it is likely that, at least,

27 1 32y o |
/ﬁg 0(1)

Q/

L
AT

8’

a/

TI

a;‘ o(1)

Byl
i
<%’|8’
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vwhere AT 1is the mean temperature difference across the boundary layer
and U 1s the mean free-stream velocity. Then equation (6b) reduces to

)

(3) The dissipation terms € and €': The order of magnitude of
the dissipation term is to be compared with v' dT/dy on the left-hand
side. To begin with, one discards the contribution of the mean flow
velocity gradients to the dissipation, as a comsequence of the discussion
in reference 6. Then,

€™ 2(M)2 + 2(E-)2 ...
oy

>4

ik R SRE I SR

-’

L (7)

The relative magnitude of ¢' and € mey be seen by studying the

r BTV T

—(Bu—')h 11/2

ox

" o

]

A
-
—

ox ox

. N 2

dut \H/|73u*

Batchelor and Townsend (reference 10) measured the quantity [— —_
for both isotroplc turbulence and in the wake of a cylinder. Since the
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high-frequency components are responsible for ¢, one expects the ratios
in the two cases to be close to each other. It turns out that the wake
case has a higher ratio but both were within 10 percent of the value h.0.t
It may therefore be concluded that

r), = 0(1)

For the order of magnitude of the mean dissipation € Taylor's
work may first be cited (reference 12). For a channel flow and
omit_‘Eing compressibility, the work done on an elementary volume is

v du where T 1is the total sheariné stress, viscous plus turbulent.

dy’
Based on experimental measurements, the microscale was evaluated and the
dissipation estimated by the formula

)2

€ n 15
22

which was originally derived for isotropic turbulence. Plotted across

the section, his results indicate that these two terms are essentially

of the same order of megnitude over a greater part of the section except
near the center line and the wall. The dissipation further does not
change its order of magnitude in these regions. The transfer of turbulent
energy, being the difference of the two, is therefore, in genmeral, not
sufficiently important to alter thelr orders of magnitude. It seems now
justifiable, based on Taylor's experience, to estimate the order of

magnitude of € by evaluating T du at points near half the thickness

day
in the case of a boundary-layer flow, where the velocity profile is

rather similar to a channel flow. In a jet flow, the region of maximum
viscous shear might be chosen for the estimation in order to avoid the
nearly isotropic turbulence in regions of weak shear. The correspondence
there is undoubtedly less satisfactory but perhaps still close enough
for the present purpose.

Tt also may be easily shown that, in the case of axial symmetry,

the work done per unit volume becomes T g—lrl- Taking this to represegﬁ
— T

the order of magnitude of ¢, one may compare with the term pcyuy’ S

to determine the relative impprtance of ¢ in the energy equation.

lFor a Gaussian distribution of Ou'/dx, the ratio would have been
3.0. Experiments by Simmons and Salter (reference 11) indicated that u'

7 \ol2
follows very closely a Gaussian law and indeed gave (u')h/lzu’)z:l & 3,0.
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To estimate T, y\r‘hen the mean motion depends essentially on y and
the normal velocity v s 0,

for incompressible flow. Except very close to the wall, T =» puv.
This formula may be regarded as valid even in compressible flow if only
the order of magnitude is desired. Rewriting,

T ERuvlu'“v‘l

where R,, 1s the correlation function. To compare the dissipation
with transfer terms in the equation of motion, form the ratio

= _dE_c '@

Then,

— (92)

vwhere ﬁm is the characteristic mean velocity, Tm is the characteristic

mean temperature, and Afm is the characteristic mean temperature differ-

ence. The replacement of % % by ﬁm/Af[‘-m is again based on Reynolds'
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analogy, identifying the mean velocity and temperature distributions.
With the introduction of a characteristic Mach number M, equation (9a)

becomes

== (9p)

Thus it is seen that, with a similar turbulence pattern, the importance
AT,

of the dissipation term is proportional to Mme/_—m. The similarity of
Tm

the turbulence pattern, incidentally, needs only to cover the lower part

of the frequency spectrum, as would prevail when mean streams of differ-
ent velocities are passed through the same grid.

The criterion (9b) will now be applied to two cases of experiments on

jet flow made by Corrsin (references 13 and 14). In reference 13, the
data are as follows:

Jet, 1 Inch
u, = Nozzle velocity = 10 meters per second

AT, = Nozzle temperature difference s 10° C

At x/d = 20, r =5 centimeters from axis
Up/uo = 0.26
AT /AT, = 0.22
|u /8| ~ 0.18
lv'/ﬁil r 0.1k

= 0.010

ﬁ-ﬂ
<~
ar
N
!

%;Cﬁ/ﬁﬁ) s 0.132 per centimeter

%;(Aﬁlbﬁﬁ) ~ 0.120 per centimeter

a
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(The slopes are almost identical, indicating the approximate validity
of the Reynolds' anslogy in this case.) Hence,

T5 o) 07.07 A-T-?;m
But
Mm2 » 6l x 1076
ATy [Ty & 7 x 1073
Thus

Ty M 0(0.001)

In reference 14 by Corrsin and Uberoi there are the following data:

Jet, 1 inch
u, = 100 feet per second

AT, = 170° C

At x/d =15, ATy = 0.3
AT, = 50° C

/

Uy ® 0.4
u, = 40 feet per second

At r/rp = 1.0 of the section, where rp, is the radius at which
AT/ATy = 1/2,

%;(E/I—Im) » 0.6 per centimeter
%(AT/ATm) % 0.55 per centimeter

lv'fﬁml s 0.1
T/ T2 %0.006
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Hence

With M;® % 0.0016 and ATy /Tp ~ 0.1h, one has finally, again,
Ts s 0(0.001). The experience in these two cases seems to suggest that

in Jet flow the dissipation is of no importance in the energy equation.

For quelitative results, equation (9b) may be put into another form.
Introducing the mixing length,

u'v! = Zlv'l%

Then

w ol & (m)
T olz dy(ﬁm)@m/—m (10)

This formula may be checked by the jet-flow results. If the "breadth" b
is taken to characterize the Jet spreading, similarity of the mean veloc-
d /4

ity profile will lead to E(ﬁ;) = A/b at any given y/b, say y/b = 1.
Using Prandtl's assumption of 1 1n jet flow,
1 =3Bb
Consequently, equation (10) becomes
2
rsw AXB XO("_—MH%-> (11)

ATy /T

From previous experiments, A X B s 0.06; its constancy is thus verified.

Let eguation (10) be now applied to boundary-layer flow. Here one
may take

My = Free-stream Mach number

Tm = Free-stream temperature
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Consider the case of an insulated wall,

ATy =‘Stagnation temperature - Tﬁ

Y -lgy2
I
as usually accepted. It follows that

2
My~ o, 2

a constant, and

| 2 d [u
Ty ™ o[ = 1 E(%m)] (12a)

Now in incompressible flow, & popular approximate form of the velocity
distribution is

o

where 8 1s the boundary-lsyer thickness. Ladenburg and Bershader
measured for a supersonic stream over a flat plate (reference 4),

concluding

Al

Putting u/Up = (y/5)%, and taking 1 = Ky as for incompressible flow,
one gets for order-of-megnitude purposes

rs & 0[7 2 T Kn(%)n] (12p)
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‘As previously stated, the dissipation may be estimated at the station
y/8 » 0.5. With K = 0.k, 7 =1.%k for air,

x5 % 0[2n(0.5)7]
» 0(0.3) for n = 1/7

~ 0(0.25) for n = 1/9 (13)

The result of equation (13) shows that for an insulated wall, the dis-
slpation is of the same order of magnitude as the terms kept in the energy
equation. The usual practice of omitting the dissipation term is there-
fore incorrect. It 1s also interesting to see that, in boundary-layer
flow over an insulated wall, the welght of the dissipation term is
sensibly independent of the Mach number. Such a situation naturally will
be greatly modified when excessive cooling or heating of the wall is
Introduced by auxiliary means.

EXTENSION OF SIMITARITY THEORY TO COMPRESSIBLE

TURBULENT BOUNDARY LAYER

After the exploration in reference 6 of the foundations and limita-
tione of the similarity concept in the case of incompressible turbulent
boundary-layer flow, it is natural to attempt to formulate a theory of
the compressible turbulent boundary leayer on a somewhat similar basis.
One recognizes that the additional density and temperature fields, the
mean distribution as well as the fluctuations, must bring in many more
difficulties. The similarity theory was shown to involve many approxi-
mations for the incompressible problem. The extension to compressible
flow must therefore be made to an even more approximate degree. Never-
theless, 1t may again be stressed that the similarity concept leads to
& simple model of the intrinsic turbulence mechanism, which is essentially
correct at least 1n incompressible flow. By using this model a unified
theory is possible for the mean velocity and temperature phenomena, with-
out the necessity of separate assumptlions whose consistency with each
other cannot be ascertained. Moreover, the mean distributions are not
very sensitive to the assumed mechanism of the turbulence, as the exper-
ience in compressible flow has indicated. Any discrepancy of the simi-
larity model from the true one may be expected to influence but 1little
the usefulness of the theory in predicting mean distributions.
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A review of prevailing theories of compressible turbulent boundary
layer discloses that a better fundamentael concept can be claimed by
none. The earliegt attempt by Von Kérmén (reference 15) was to sub-
stitute the wall conditions for the stream conditions in the formlas
derived for incompressible flow. More recent ones include the compar-
atively simple theories of Wilson (reference 2) and Van Driest (refer-
ence 3), both starting from the incompressible expression

&

ay

du

ay

T =57,2

Van Driest took 1 to be Prandtl's mixing length 1 = Ky, while Wilson
used Von Kérmén's form

z:.c@/ﬁ
ay/ dy>

The extension to the compressible case was formally carried out by
allowing P to vary as a consequence to the temperature distribution.
By assuming the effective turbulent Prandtl number equal to unity, the
mean temperature and the mean velocity, in the case of an insulated wall,
satisfy the isoenergetic law,

52 = Constant

el b o

cPT +

in en analogous manner as for laminar flow. A recovery factor (refer-
ences 16 and 17) was sometimes employed as & refinement of the isoener-
getic law. For empirical data on the effective turbulent Prandtl number
and the validity of the isoenergetic law in turbulent flow, discussions
can be found in literature. In jet flow, for instance, the effective
Prandtl number for air lies between 0.7 and 0.8 (reference 18). But if
dissipation terms are not negligible, the isoenergetic law camnot follow
in any case. Though useful, it must be regarded as largely empirical.

The work of Ferrarl (reference 1) started on a more solid basis by
including the energy equation to furnish a relation between the mean
temperature and velocity. The assumption of a special relation, such
as the isoenergetic law for the insulated wall, is thus avolded. He
used Prandtl's mixture-length concept to deal with momentum and enthalpy
transfers. When the two mixture lengths are taken to be ldentical, a
temperature-velocity relation is obtained and appears to be formslly the
gsame one which occurs in a laminar boundary lasyer for a Prandtl mumber
of unity. This coincidence perhaps may be used to explain the fact that
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the isoenergetic law has been found to lead to no serilous error. However,
Ferrarl, too, neglected the viscosity terms in both the equations of
momentum and that of energy. His procedure cannot be easily applied if
the dissipation terms, which are shown to be not negligible, are kept.

In addition, his argument for identifying the two mixture lengths (for
momentum and for enthalpy) is by no means conclusive.

It is thought that especially in the compressible case an intuitive
guess to the proper form of the mixture length is rather difficult because
of the camplicated interactions of the velocity, density, and temperature.
A systematic approach based on a clearly defined mechanism becomes nec-
essary in order to achieve self-consistency.

As was previously shown in the discussion of the incompressible case,
a theory can be established on an assumed similarity among the lower-
frequency components of the turbulent fluctuations. In extending to the
compressible case, the behaviors of the density and temperature fluctu-
ations require certain additional simplifications based on physical con-
cepts. The differential equations are to be satisfied in a more approx-
imete manner. Let the complete set of equations be first written down:

Du 1
1Dp Ou, ov _dw _
oot T ax T3y T3z 0 (15)
pcvgt£+p(?+§§+§i>=ue (16)
X VA
P = PRT (17)

One mey note that in the equations of momentum the viscosity terms are
neglected but not in the equation of energy as a consequence of the
discussion in the section "Energy Equation and Dissipation Term." Prior
to a mathematical derivation, the procedure maey be summerized to consist
of the following considerations:

(1) Partial linearization of the differential equations by neglecting
the fluctuations of density and temperature against the mean quantities
themgelves but not the derivatives of the fluctuations.
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(2) The separation of the density and temperature fluctuations into
Jower- and higher-frequency components in a menner analogous to the
veloclty fluctuations. A similarity of the turbulence is then assumed
to include all these lower-frequency components.

(3) The dilatation of fluid element, that is,

_Ou, ov  dw
0x Jdy Oz

e

is regarded as a separate entity, not deducible from similarity of the.
lower~frequency ccmponents.

The following discussions will substantiate these points:

The partial linearization process is based on the fact that, ordi-
narily, the megnitude of turbulent fluctuastions is only a small fraction
of the mean quantity. For a first-order approximstion, one may take

-

s oL\f(p')Q ol, <1

_ - e (18)
: %m OL\’(T')Q T_, <1

In teking derivatives, however, the fluctuation terms must be kept as
was previously done for the veloclty fluctuations and with the same
arguments. By so doing it is seen that the differentlial equations are
satisfied to a lesser degree in comparison with the incompressible case.
The difference between velocity and other quantities lies in that the
mean density and tempersture cannot be dismissed like the mean velocity
by the introduction of relative motion. The mean density distribution
alone essentially provides the coupling between temperature and veloci-
ties. A consequence of equations (18) is that the equations of momentum
will look exactly like those in incompressible flow, only with a variable
mean density distribution. Thus, as very rough approximations, the
starting point of the theories of Wilson (reference 2) and Van Driest
(reference 3) is not without justification.

o2

-
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For a closer examination, one separates the larger eddies from the
small ones,

pl = pzl + phl
(19)

T = Ty' + Ty

where subscripts 1 and h denote the lower- and the higher-frequency
components, respectively. The fluctuations are then seen to be due to
two sources, convective actions of the larger eddles and heating -from
viscous dissipation. ILoosely speaking, the convective actions, being
carried by eddies of the larger sizes, would show up only in the lower-
frequency components. The viscous heating comes from the very small
eddies and would contribute to both the lower- and the higher-frequency
components. The demarcation between the "larger" and "small" eddies
therefore becomes even less clean-cut than that In Incompressible flow,
where the coupling through & density variation does not exist. It is
nevertheless still conceivable that for eddies small enough, theilr equi-
1librium is controlled by mno other than Kolmogoroff's (reference 19)
paremeters T and €, § belng now the local mean viscosity. For points
across the boundary-layer thickness, there is merely a shift of the
Kolmogoroff range in the wave-number space, the ratio of the wave numbers
separating the Kolmogoroff range from the rest being of order unity since
the ratio of F 1is only of order unity. The higher-frequency components
pnp' and Ty' therefore must participate in a different equilibrium from

py' eand TZ'. The attempt now 18 to establish differential equations
governing the approximate behavior of the lower-frequency component only.

It 1s found that, after partial linearization, a typical term to
be examined in the process of setting up the differential equations for

the lower-frequency fluctuations is %—-T'u'. Reasoning in the same way
X

as before, the lower-frequency part of T'u' consists of T;'u;' plus
some contribution fram Tp'up'. Now the magnitude of Ty' is probably
of the same order as Ty3'. For, one could visualize that T;' for order
of magnitude 1s associated with the mean distribution dT/dy, while Ty'

is essentially related to the dissipation ¢'. The quantity ¢' was
shown in the section "Energy Equation and Dissipation Term" to be of the
same order as € and also of the same order as the contribution from
dT/dy. However, previous discussions indicated that (uh')2 << (ul')z;

hence

Th'up' = Ty'ug' & w' =up' » \/(uh—')E = \/(ul')Q , K1 (20)
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Therefore, the high-frequency parts again may be omitted in terms iike
T'w' without seriously affecting the equilibrium of the lower-frequency
components.

There is another way of looking upon such terms as %}E T'u'

occurring in the energy equation, relying more upon a physical inter-
pretation. One could regard the operator D/D‘l:. as representing the
change following the fluid element. The higher-frequency velocity fluc-
tuations tend to average out without contributing eppreciably to the
movement of the element.2 The operator D/Dt should therefore be asso-
ciated with only uj', v3', and w3'. In equation (14), the guantity

after D/D't is the velocity. Being now linear, the equation can be
split into one for the higher frequency w,' and another for uj;'. The

previous results for the velocity fluctuation are reproduced. In equa-
tion (16), the temperature appears also in a linear fashlon, the lower-
and higher-frequency parts can again be simply separated.

The dilatetion e = o2 + O¥ 4 OV

dx dy oz
requires a different handling when a theory of the lower-frequency com-
ponents is desired. TFirstly, the magnitude of each term in e 1s mainly
due to the high-frequency component rather than the low, since

deceptively simple in appearance;

du'’ Bu')2
— 1w 0 ———
ox ox
du'\2
and a—- has been shown in reference 6 to depend on the very small
% .

eddies in the study of the dissipation €. In the second place, the

2One may get an idea of the relative importance to diffusion of the
low-frequency and the high-frequency components by examining Taylor's
formula (reference 20)

— &
Zy2 = (v)2 f[ R dt dat

for diffusion by continuous movements where Rg is the correlation of

the velocities at time interval & apart. Being proportional to (v')é,
the movement is largely due to the lower-frequency components.
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equations for compressible flow must be reconciled with the incompress-
ible case when the density remains constant. If one applies a similarity
consideration in a very naive manner, the apparent conclusion is that

e w %‘i s 0(V/L)

X

where V and L are the similarity scales. It would then be difficult
to produce a consistent theory aside from making the postulate that

e =0 if p = Constant
e = 0(V/L) if 7 # Constant

To say the least, such a postulate would be too arbitrary. A more
satisfactory concept is to regard e as an entity by itself. Although
composed of terms like Ou'/dx, the net effect of all three terms com-
bined together cause e +to behave in its own way. The equation of
continuity (15) tells how this entity e 1is related to the density
variation.

One is now in a position to write down the differential equations
for the lower-frequency fluctuating components. From equations (14) to
(16), with partial linearization and separation of lower- and higher-
frequency components, the following are obtained:

2(E+w) = -2 (5 + m)
v mESEen) (=20
'EI-,' wp' = —% g—z(p + Pz')

g—t-(a +py') +e=0 (22)
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D (= - pe + (ue)y!

=—I\T + T7') + +p'le = ———— 2
Dt( ) (3 ') = (23)

Here D_ is to be understood as
Dt

D FS) — o) o) s}

—=—+ (U +up' )=+ vy' T+ Wyt — 2k
> =5t (E “Z)ax TN (24)

From the equation of state (17), one gets

D = RpT
(25)

= +

Pty Ty
T P T

where the double correlation p'T' is omitted since

tms ' 1 2 . t 2
o T moﬂp_) V(') .«
oT P T

In the next section, similarity scales will be derived from the sbove
differential equation in parallel with the incompressible theory. The
mean velocity and temperature distributions will then follow.

SIMILARITY SCALES

Based on the system of differential equations (21) to (23) for the
lower-frequency components of the fluctustions, it 1s now possible to
deduce the similarity scales for these lower-frequency components and
bulld upon them a theory of the compressible boundary layer in parallel
with the incompressible case. For the sake of simplicity, let the sub-
script 1 be dropped and rewrite the equations as:

IQJ

E+p')y, 1i=1, 2 3 (26)

o] |+

]?E(ﬁi + ui') = -

Q/

X
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1D /- .
3 E(p + D') =e (27)
D ,= RD
— (T+7T') ==—0p'
cht( ) St ®
=Ve + (ve)!' (28)
D = RpT
o (29)
2o, m
D [o] T
where
0 :
e—g—x;(ui+ui)
and

= é—-+ (E'+ u') 2 + v' o + w' o

ot ox dy oz

&1

Equation (28) is obtained by eliminating e in the energy equation by
means of the continuity reletion.

For the case of boundary layer over a flat plate, consider the state
of affairs at large distances from the leading edge. There, if the slope
of the outer edge of the boundary layer be assumed small as is usually
done for the incompressible case,3 a first approximation will be to regard

31In the incompressible case, a popular formula, though not too well
substantiated, for the growth of the boundary-layer thickness is

5 « xh/5

hence %2-—+>0 a8 X —> ». See, e.g., reference 21.
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the mean flow within the boundary layer as a parallel flow varying only
in the normal direction, namely
u = a(y)

w=0

<l
It

The mean pressure is, of course, constant and equal to the value in the
mein stream. In considering local similarity, the observer may be taken
to move with the local mean motion, again as in the incompressible case.
Thus,

—_. @, 1 24d%, ]
Tyt 2y2d;y2

> (30)
D _d @, 1 2d% ) IO -
D—_-t-_at+<ydy+2yzdy2+...+u)+vay+w BzJ

and so on; the right-hand side of equation (26) becomes

]
ol |+
¥
e -

and the dilastation reduces to

k4

Q/

Xy

One may recall that, at this point, for the incompressible case
the procedure was to use the vorticity equation by eliminating the
pressure fluctuation terms on the right-hand side of equation (26) from
each other. Such a step is not readily useful here because the mean
density now varies with y. TImstead, by cross-multiplication, there
follows

dp' Dv' _9Op'D [ '
> Dt ByDt(u+u) (31)

and so forth. Hence, if-a scale can be found for the pressure fluctu-
ation, equation (31) indicates that the velocity and time scales are
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determined by a relation identical with that for the incompressible case.
In other words, these scales should come from a consideration of the

operator D/Dt. Expanding %E-(ﬁ'+ u'),
2—

vy 1
du du+. .)+—au+

du 1 QEE ;) out , ou! . ou
(y + 2 y2 ...+ ) St Sy o

Let the fluctuating motion have a length scale 1,, a time scale tg,
and a velocity scale v, where

Vo < Zo/to

After substitution,

where subscript 1 denotes the normalized quantity:

(u', v')/vo

il

(ur', v1")

(x: 2] Z)/ZO

(X1, Y1, Z1)
The similarity solutions require

w ' o= uy'(X, Y1, Z1 1)



NACA TN 2542 25

and so forth. Therefore, the mean flow quaﬁtities must be separable
from the normalized fluctuating quantities in the above expression.
Exactly as in the incompressible case, it follows that

1 &

(32)

and, if the mean velocilty gzgtribution is of predominant lmportance, so

that the term involving g;% must be retained,
&g ja°T
1, = == (33)
° dy/dwz

Applying the same procedure to Dv'/Dt, the same set of scales is
obtained. Equation (31) is seen to be satisfied by such a cholce of
scales, provided a scale for pressure fluctuation exists.

The pressure scale 1s easily deduced from equation (26). Let the
scale be =n. One has

liﬁ:D_(u+u')
P 1 Bxl Dt

Vo Dug

to Dty

with Dul‘/Dtl representing the normalized expression of %E (w + ut).
Thus,

-2
- T = PV, (34)

As the next step, the eﬁgrgy equation (28) may be considered to
establish a possible scale for the temperature fluctuation T'. A naive
approach of again assuming a single scale for T' and substituting the
rest by the results (32) to (34) will lead to additional restrictions on
the mean flow and rule out a self-consistent description. This approach
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must therefore be sbandoned. In view of the linearity of the

varisble T' in equation (28), however, one can at least formally split
the tempersture fluctuation T' into three parts and rewrite equa-
tion (28) into a system of equations:

Cp %ch + Tl') =0 (35)
SERRI e
D t Y- 1
cp 55 T3' = V€ + (ve) (37)

Equation (35) is the same as the usual incompressible heat-transfer equa-
tion in turbulent flow. Consequently, T;' may be interpreted as the

temperature fluctuation caused by the mixing of fluid elements from
strata of different temperatures, due to the turbulent velocity fluctu-
ations. Alternatively, one may regard equation (35) as describing that
a certain portion of the temperature is attached to each fluid element
during the process of mixing. Equation (36) describes the contribution
to temperature fluctuation by the pressure field acting on the volume
change of the fluid elements - the compressibility effect. Such an
Interpretation is most clearly seen when the pressure term is converted
back to the form of equation (35) involving explicitly the dilatation e.
The third part T3' in equation (37) obviously represents the heating

effect of the viscous dissipation.

One may now Introduce different scales 63, 6o, and 93 for the
fluctuations Tq', To', and T3'. Expansion of equation (35) leads to

e Ty !
vovl'(@""x'zoﬁ-l" . ,)+._l.a—(——l—>+. . .l =0
&y 1, © a2 t,[ot\61

Hence,

07 « g % (38)
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\

and, if the higher derivatives of the mean temperature distribution are
of predominant importance,

«%g (39)

lo

In a similar way, by expanding equatioms (36) and (37),

62 o v02 ()4'0)

83 « to[VE + (ve)] (k1)

It was previously shown that, for the dissipation, both the mean and the

du, '\ 2
fluctuating parts are related to terms like <5—2 and are of the same
X

order of magnitude. Taylor's expression of balancing the energy yields
now

Substitution into equation (41) shows that 63 1s of the same form as

8o. There are but two scales for the temperature fluctuation given by
equations (38) and (40).

The scales of the density fluctuation must satisfy the second
relation of equations (29). Agaln one has a linear form and may split
p! into several parts:

[y + 1y 4. . )+ B

Hllo|
alof

pl'+p2'+...=

Denoting the scales for p;', po', . . . by T3, Top, . . ., ODE
recasts the above into a system of equations:

9
Ty < =6
1 T 1

« 2 g &L
-T-Zody ()4'2)
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To “%92
p_2
«%vo _ (43)
r3 C%ﬂ
p_2
CK-T-VO (,-l-ll-)

Thus ro and r3 also are proportional. With the help of the first
relation of equations (29), equation (42) may be rewritten as

dp
) < 15 5 (45)

Equetions (33) and (45) are the expressions for the two scales of p'.

It is desirable at this moment to bring attention to the entity
"qilatation.” The equation of contimnuity (27) has not been used in the
previous derivation of the scales. One could formally write e « vb/lo
and find that the above scales satisfy equation (27) as well. A proce-
dure like this, however, is not justifiable on the ground of the argu-
ments in the section "Extension of Similarity Theory to Compressible
Turbulent Boundary Layer."

A1l the scales of the lower-frequency fluctuations have now been
related to the mean flow. There remains one point which needs some
clarification. The question 1s: For the length scale 1,, which of the

expressions, (33) or (39), should be adopted? Evidently, if they are
compatible, there must be

————— P ey (46)
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Integrating,

@ _ A(g‘z‘)al/ a2
dy ~ “\dy

On the other hand, it will be seen in reference T that a relation

between u and T may be obtalned from averaging the equations of
motion and energy. The relation is further independent of the choice
of 15. If the expressions of 1, from equations (33) and (39) are

equivalent, the relation must also be reconcilable with equation (47).
Such is the case for incompressible flow when Reynolds' analogy is valid
(1.e., aj/ap = 1). But, in general, one can hardly expect the com-
patibllity relation (47) to be fulfilled, except perhaps approximately.
It will be seen later that the choice of the form of 1, determines the

distribution in the space coordinate (y-direction). At present, one will
be contented with the notion that the choice of equation (33), say, means
more emphasis on the satisfaction of the momentum relations at the expense
of the energy relations, and vice versa for the choice of equation (39).
Some sdditional discussions are Included in the following section.

(¥7)

DISCUSSION

Before a detailed treatment of the theory of turbulent boundary
layer, it may be worth while to remind oneself of all the epproximations
involved and, hence, the limitations to be introduced in the investi-

gation.

The preceding theory for the turbulent boundary layer involves mainly
the following approximations: -

(1) The turbulence pattern: The turbulence pattern is idealized to
be such that the small (high-frequency) dissipative eddies are separable
from the larger (lower-frequency) energy-carrying eddies. In accordance
with Kolmogoroff (reference 19), the small eddies are isotropic and
particlpate in an equilibrium governed by the kinemastic viscosity v
and the rate of dissipation €. The larger eddles are assumed also to
participate in an equilibrium, governed by the locel conditions. Here
one sees that three approximations are involved:

(a) The separability of small and larger eddies
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(b) The possibility of similarity for the larger eddies
(c) The "local” character of the similarity for the larger eddies

In order that the small dissipative eddies may be separated, an essential
condition is that the turbulence Reynolds number be high. This, in
general, will follow if the mean-flow Reynolds number is high, for it is
a commonly accepted notion that a higher mean-flow Reynolds number creates
more small eddies. In this respect, a higher main-stream velocity out-
side the boundary layer should check better with the theory. The simi-
larity for the larger eddies is mainly an intuitive hypothesis and cer-
tainly needs experimental verification. The arguments for itse plausi-
bility are given in reference 6. In the very simple configuration of a
flat-plate boundary layer without pressure gradient, the chances for the
realization of similarity are certainly on the favorable side. One may
even take a heuristic point of view and regard the whole theory as being
an attempt to seek a similarity solution, if at all possible. The
behavior of the small eddies 1s decidedly different, but the order-of-
magnitude study in reference 6 indicates that the original formulation
by Von Kdrmdn in 1930 (reference 22) remains valid if the fluctuastions
are interpreted as the lower-frequency ones only. The scales for length
and time are determined from the local state of the mean flow by
restricting attention to the immediate neighborhood of the point in
question. It is well-known that the length scale from such considerations
is only moderately small in comparison with the boundary-layer thickness.
Experiments in the National Bureau of Standards for boundary layer with

a pressure gradient further showed the existence of significant large
eddies (reference 23). However, there is the consolation that for a
class of the distribution profile, pointed out by Prandtl (reference 21,

p. 132):
T=Ay +B)* +¢C (18)

where A, B, and C are constants, the magnitude of the length scale
is of no consequence. This 1s true because the higher derivatives, which
bring in the conditions away from the point, will form length scales

proportional to the one determined by dﬁ/dy and dgﬁ/dyz. The loga-
rithmic distribution belongs to the class (48) and so do the usual power

(1/7, 1/9, etc.) laws.

(2) The boundary-layer growth: The growth of the thickness of the
boundary lsyer has been neglected in the present theory, as everything
is assumed to depend on the coordinate y omnly. Such a neglect is
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equivalent to the stipulation that d8/dx << 1l, 8 being the boundary-
layer thickness. In the incompressible case, semiempirically the gen-
erally accepted formula is

5 a:ll[)'l'/5

which shows that, although the rate of decrease of the slope is rather
slow, dd/dx could be as small as one wishes at distances very far from
the leading edge. In epplying the theory to moderate distances from the
leading edge, one must be aware of this limitation when compared with
experiments.

(3) The two cholces of the length scale: With the extension to
the compressible case, two possible choices of the length scale are
found, depending on whether the equations of momentum or the equation
of energy is to be better satisfled. Unless the two scales are essen-
tially identical, in the manner discussed at the end of the section
"Similarity Scales,” an added degree of approximation is involved,
because one of the expansions has to be cut down to the order of the
first derivative only. In this situation, the validity therefore hinges
on whether the second derivative ig sufficiently small in comparison
with the first for either U or T. In other words, the approximation
will still be good if one of the two scales is much larger than the
other, for example,

dujad?n __ 4T [a°T
ayf y°  dyf ay®
au /asq

so that, for local behavior, only the smaller scale (here EJ-E;§>
controls the motion. As an extreme case for the purpose of illustration,
suppose that a large amount of heat were-taken away at the flat plate to
reduce the wall temperature to that in the free stream. The temperature
profile_in the boundary layer would be approximately uniform. The

term dT/dy, and so forth enters the determination of the length scale
through the convective action and is obviously unimportant in this case.
One must then choose the length scale from the velocity profile. In the
general case, 1t can only be hoped that the actual distributions do not
depart too much from the relation (46), which holds for approximately
1dentical scales.

<<

(4) The effect of pressure gradient: Tt is interesting to observe
that the introduction of a pressure gradient renders impossible the
extension to the compressible case. This is so because the scale for
the pressure fluctuation can no longer be determined as related only to
the velocity scale (cf. equation (34)). Without a similarity among the
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pressure fluctuations, there follows no similarity for the temperature
and the density fluctuations. The entire scheme breeks down. Difficulty
like this does not influence the incompressible case, where the pressure
fluctuation is of no comnsequence and of no interest. A remark may be in
order about Von Kdrmén's initial derivation in considering a channel
flow. His derivation started from the vorticity equation. Such a pro-
cedure is still permissible in the present theory when p remains con-
stant, so that pressure terms can be eliminated by cross-differentiation
of equation (26). The same similarity theory would then be obtained.

When the results of thé present theory for a flat-plate boundary

layer are to be applied to the case of an airfoil, the additional restric-
tion to the possible degree of agreement should be kept in mind.

Massachusetts Institute of Technology
Cambridge, Mass., December 27, 1950
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APPENDIX
SYMBOLS

constants

specific heat at constant pressure and constant volume,
respectively .

du OV oW
dilatstion <S; + — By + az)

coefficient of heat conductivity of fluid
mixture length or similarity scale of length

similarity scale of length

pressure

mean pressure and mean pressure in free stream, respectively

ratlos of various heat conduction and viscous dissipation
terms to turbulent transfer term in equation of energy,
discussed in section "Energy Equation and Dissipation
Term"

similarity scales of three components of density fluctu-
ation, defined by equations (L42) to (M4) -

time

similarity scale of time for fluctuations

velocity components in x-, y-, and =z-directions,
respectively .

Cartesian coordinates; x, axis in direction of plate and
free stream; y, axis normal to plate; and 2z, axis
parallel to leading edge of plate

characteristic length

characteristic Mach number
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gas constant in equation of state

characteristic Reynolds number
correlation constant between u' and V'
turbulence Reynolds number

temperature
characteristic mean temperature
characteristic mean temperature difference

meaen temperature at wall

mean velocity component in x-direction

characteristic mean velocity

ratio of specific heats
thickness of boundary layer

rate of dissipation and its fluctuating component,
respectively

similerity scales of temperature fluctuation defined by

equations (38), (40), and (L41), respectively
Taylor's microscale of turbulence
coefficient of viscosity
coefficient of kinematic viscosity
similarity scale of pressure fluctuation
density of fluid
shearing stress

dissipation function in equation of energy
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Subscripts:

A low-frequency part of fluctuations

h high-frequency part of fluctuatilons

1 normalized fluctuating components, for example,

p1' = u'/vs, x' =x/lp, and so forth; also, quantities
in free stream

Barred quantities alweys represent mean values, primed quantities
represent fluctuations.

35
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